Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

small

Supporting Information

for Small, DOI: 10.1002/smll.201303442

DNA Origami Structures Directly Assembled from Intact
Bacteriophages

Philipp C. Nickels, Yonggang Ke, Ralf Jungmann, David M.
Smith, Marc Leichsenring, William M. Shih, Tim Liedl,* and
Bjérn Hogberg*

Supplementary Information

DNA Origami Structures Assembled Directly from
Intact Bacteriophages

Philipp C. Nickels!, Yonggang Ke?, Ralf Jungmann?, David M. Smith!, Marc Leichsenring?,
William M. Shih2, Tim Liedl**, Bjérn Hogberg3"

1 Center for Nanoscience and Department of Physics, LMU Munich (Germany)
2Dana-Farber Cancer Institute, Harvard Medical School, Boston (USA)
3 Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institute, Stockholm (Sweden)

*To whom correspondence should be addressed: tim.liedl@physik.Imu.de, bjorn.hogberg@ki.se

Supplementary Note S1: Folding from Bacteriophage M13 2
Note S1.1: Preparation of M13 Phage 2
Note S1.2: Assembling Structures from M13 Phage Particles 3
Note S1.3: Assembling Structures from M13 infected liquid E.coli Culture 4
Note S1.4: Agarose Gel Electrophoresis and Gel Purification of M13 DNA Origami Structures 5
Note S1.5: Transmission Electron Microscopy of M13 DNA Origami Structures 5
Note S1.6: Atomic Force Microscopy of M13 DNA Origami Structures 6

Supplementary Note S2: Folding from Bacteriophage A 8
Note S2.1: Preparation of A Phages 8
Note S2.2: Denaturing Agarose Gel Electrophoresis of A-DNA and Phages 9
Note S2.3: A-DNA Melting Curves 11
Note S2.4: Assembling Structures from A Phage Particles 12
Note S2.5: Agarose Gel Electrophoresis of A DNA Origami Structures 13
Note S2.6: Atomic Force Microscopy of A DNA Origami Structures 13
Note S2.7: Transmission Electron Microscopy of A DNA Origami Structures 13

Supplementary Note S3: DNA Origami Designs and DNA Sequences 15
Note S3.1: Design of M13 DNA Origami Structures 15
Note S3.2: Design of the A DNA Origami Structure 15

Supplementary Note S1: Folding from Bacteriophage M13

Note S1.1: Preparation of M13 Phage

The 3 different M13 bacteriophages (p7249 phage, p7560 phage, and p8064 phage) were
prepared as previously described.l!] Instead of purifying the single-stranded M13 DNA we
stored the PEG precipitated phage particles (re-suspended in 10mM Tris, pH=8.5) at -20°C
until further use as scaffold material. Figure S1a shows a transmission electron micrograph
of a purified M13 phage particle. Since phages consist of a protein shell and the genomic
DNA inside, a quantitative measurement of the concentration of the phage particles via
absorption spectroscopy is difficult. Titering the purified phage would give us the amount of
infectious phage particles instead of the overall concentration. Thus we estimated the phage
concentration via comparison to a standard DNA marker. We compared the fluorescence
intensity of the target phage band on agarose gels to the intensity of a standard DNA marker
with known mass value (shown in figure S1b, the double stranded 1.5kbp DNA from a 1kb
DNA ladder (New England Biolabs)). The M13 phage samples were denatured prior to
loading on the gel using 0.1% SDS, 10mM EDTA and incubation at 65°C for 5Smin.

~75nM ~90nM ~100nM

1.5kbp
60ng band

p7249 phage
p7560 phage
p8064 phage

w
o
3
Q
IS
®
>
@

1kb DNA ladder

Figure S1: (a) Transmission electron micrograph of a ~1um long filamentous M13 phage particle. (b) 2%
agarose gel containing 0.5xTBE and 0.5pg/mL ethidium bromide run for 3.5 hours at 70V. We used 4 different
concentrations of the 1kb DNA ladder. For each concentration we measured the intensity of the 1.5kbp band
and together with the known mass value we derived an intensity-mass plot. Based on this intensity-mass plot

we estimated the concentration of the phage particles using the intensity of the target phage bands.

Note S1.2: Assembling Structures from M13 Phage Particles

Assembly of M13 DNA origami structures was accomplished in a one-pot reaction. 5nM
bacteriophage M13 particles were mixed with 100nM of every oligonucleotide staple strand
(high purity salt free, Eurofins MWG Operon) in 1xTE buffer (10mM Tris-HC] pH=7.6, 1mM
EDTA) containing 5mM NacCl, 0.1% SDS, 1mg/mL Proteinase K (New England Biolabs), and
varying concentrations of MgClz (12mM for the 2D rectangle, 16mM for the 6HB and the
24HB, 18mM for the three layer block). For the control samples 5nM of purified scaffold
was used instead of the phage particles. The mixture was subjected to a thermal annealing
ramp (using a PTC-225 DNA Engine Tetrad, M] Research) as shown in figure S2a. It was
heated to 65°C for 5 min and subsequently cooled to 25°C via a non-linear temperature
ramp over the course of 2 hours for the 2D rectangle, 16 hours for the 6HB and the three

layer block, and 40 hours for the 24HB.

2D rectangle 1 2

e

F 65°C

phage

0.1% SDS
1 mg/mL Proteinase K

P7249 scaffold '

9] @
% a
iy)
[} 2
= =
£ S
S @
% 2
o -
2 S
=

s

25°C A

T
N
(%]
(@)

1kb DNA ladder

2-40 hrs
Figure S2: (a) Thermal annealing ramp used to assemble the M13 DNA origami structures (directly from
phage as well as the control samples). (b) Comparison of different annealing procedures to fold directly from
phage: only the addition of SDS results in a band of correctly assembled origami structures. (c) AFM image of

the sample used for lane 2. (d) AFM image of the sample used for lane 3.

To make sure that the phage particles are denatured and origami structures are assembled
from the released genomic DNA we tested different annealing schemes. The samples were
compared to a control sample conventionally folded from purified scaffold (figure S2b, lane
1). Substituting the purified scaffold with phage particles without any denaturing agent or
treatment followed by the depicted annealing ramp (figure S2a) did not yield a band of
folded structures (lane 2). The AFM image of such a sample in figure S2c shows that the

phages are still intact. A 10 min heat denaturing step followed by the described annealing

did not result in a detectable band of folded products as well (lane 3). The AFM image of
such a sample in figure S2d shows that the phage particles are denatured but only a few
origami structures are formed. The addition of SDS as denaturing agent without any extra
heat denaturing steps yields a band of correctly folded structures migrating at the same
speed as the control band (lane 4). Proteinase K is not needed for the folding process itself.
However, it digests the M13 capsid protein debris and thus results in a cleaner background

in AFM/TEM imaging.
Note S1.3: Assembling Structures from M13 infected liquid E.coli Culture

M13 bacteriophage was amplified in an E.coli liquid culture as previously described.[!] At
the point of harvest the E.coli cells were pelleted via centrifugation at 3,000rcf, 4°C for
30min. The cell pellet was discarded and the supernatant containing the unpurified
bacteriophage was kept at 4°C until further usage as scaffold material. The concentration of
bacteriophage particles in the crude suspension was estimated via gel electrophoresis as
described in note S1.1 and figure S1. A typical liquid culture M13 prep yielded a
bacteriophage concentration of about 1 to 2nM in the crude suspension after E.coli cell
removal.

We tested whether a crowded environment full of biological compounds might
inhibit the self-assembly process via the addition of fetal bovine serum (FBS). Figure S3a
shows the agarose gel analysis data of the assembly of the M13 based 2D rectangle. We
added four different concentrations between 10 and 40 volume-% FBS to the assembly
reaction. The FBS was heat-inactivated at 65°C for 30 minutes prior to mixing the
components to prevent DNA degradation while preparing the sample. A decrease in
assembly yield with increasing FBS could not be observed.

The assembly of the M13 DNA origami structures from the crude bacteriophage
suspension was accomplished in a one-pot reaction. About 1 to 1.5nM M13 bacteriophage
(%4 of the final sample volume was crude M13 suspension) was mixed with 12.5nM of every
oligonucleotide staple strand for the six helix bundle structure (high purity salt free,
Eurofins MWG Operon) in 1xTE buffer (10mM Tris-HCl pH=7.6, 1mM EDTA) containing a
final concentration of 16mM MgClz, 62mM NacCl, 0.1% SDS and 1mg/mL Proteinase K (New
England Biolabs). Note: the growth medium used for the M13 prep contains 83mM NacCl,

thus the high NaCl concentration in the final sample. Since it also contains 5mM MgCl, we
adjusted the amount of added MgClz to 12.25mM resulting in the final concentration of
16mM. The sample was subjected to the thermal annealing procedure described in note

S1.2 (16 hour total annealing time for the 6 helix bundle).

al o rectangle

FBS (heat inactivated, [v/v])

remove E.coli

=

add: staples,
SDS & Proteinase K

thermal annealing

0% 10% 20% 30% 40%

Figure S3: (a) Assembly of the 2D rectangle from purified M13 phage with different amounts of FBS. The
crowded environment does not affect the assembly yield. The only detectable difference is the decrease in
migration speed with increasing FBS concentrations due to the increasing amounts of sodium ions added with
the FBS. (b) Illustration of the assembly process directly from an M13 infected E.coli liquid culture: first we
removed the bacterial cells via centrifugation. Next, all components needed for the assembly are added and

the structure is folded via thermal annealing without any purification of the phage particles.

Note S1.4: Agarose Gel Electrophoresis and Gel Purification of M13 DNA Origami Structures

Folded M13 origami constructs were electrophoresed on 2% agarose gels containing
0.5xTBE buffer (45mM Tris, 45mM boric acid, 1ImM EDTA), 11mM MgCl, and 0.5 pg/mL
ethidium bromide for 3 hours at 5.5 V/cm cooled in an ice water bath. Bands were
visualized with ultraviolet light and physically extracted. DNA was recovered by pestle-
crushing excised bands, freezing for 5min followed by centrifugation for 10min at 5000rcf
in a microfuge at 4°C using Freeze’N’Squeeze DNA Gel Extraction spin columns (Bio-Rad).
Recovered material in the flow-through was stored at -20°C for further usage. The 1kb DNA

ladder was purchased from New England Biolabs.

Note S1.5: Transmission Electron Microscopy of M13 DNA Origami Structures

For TEM imaging, 3uL of the gel purified M13 origami solution was adsorbed onto glow-
discharged formvar/carbon-coated TEM grids (Plano) and then stained using a 2% aqueous

uranyl formate solution containing 25mM sodium hydroxide. Imaging was performed using

a JEM1011 transmission electron microscope (JEOL) operated at 100 kV equipped with a
FastScan-F114 camera (TVIPS).

Note S1.6: Atomic Force Microscopy of M13 DNA Origami Structures

For AFM imaging, the folded M13 DNA origami structures (the 2D rectangle) were dialyzed
against 500mL 1xTE buffer (10mM Tris-HCl pH=7.6, 1mM EDTA) containing 12mM MgCl,
for 2 hours at room temperature in 3.5kDa MWCO dialysis units (Slide-A-Lyzer MINI
Dialysis Unit 3.5kDa MWCO, Thermo scientific) to remove the SDS. Samples were imaged in
tapping mode using a Multimode III AFM (Veeco Metrology Group, now Bruker AXS).
Imaging was performed in 1xTAE buffer solution containing 12mM MgCl; with SNL-10
sharp nitride cantilevers (Veeco, now Brucker AFM Probes) using resonance frequencies
between 7-9 kHz of the 0.24N/m force constant cantilever. 25ul. of buffer solution was
dropped onto a freshly cleaved mica surface (Plano). 5uL of the dialyzed origami solution
was added to the buffer on the mica surface. Imaging parameters were optimized for best
image quality while maintaining the highest possible set point to minimize damage to the
samples. Images were post-processed by subtracting a 1st order polynomial from each scan

line.

Figure S4: Additional AFM and TEM Data of M13 DNA Origami Structures

control phage

2D rectangle

mnm ﬂnm 500nm 200nm 100nm

6 helix bundle

R

100nm

24 helix bundle

50nm

3 layer block

30nm

Supplementary Note S2: Folding from Bacteriophage A

Note S2.1: Preparation of A Phages

Bacteriophage A particles were prepared as follows: wild-type A-DNA was packaged using a
commercially available packaging extract (MaxPlax™ Lambda Packaging Extract,
EPICENTRE® Biotechnologies) following the manufacturers instructions. This packaging
reactions yielded a packaging efficiency of > 10°pfu/ug of the wild-type A-DNA. A high titer
stock of A phages for long term storage was prepared via plate lysis and elution. DMSO was
added to the phage suspension (final concentration of 7% (v/v)), aliquots were plunged in
liquid nitrogen and afterwards stored at -80°C.

Phage particles for folding experiments were prepared via a small scale liquid
culture. A 50mL LB culture (supplemented with 0.2% (v/v) maltose and 10mM MgS04) of
E.coli XL-1 Blue cells (Agilent Technologies) was incubated at 30°C with shaking overnight
(the low temperature ensures that the cells will not overgrow: phages can adhere to
nonviable cells resulting in a decreased titer of the prep). The bacterial cells were pelleted
via centrifugation (600rcf for 10min at room temperature) and the supernatant was
discarded. The cells were re-suspended and diluted to an ODeoo of 0.5 with 10mM MgSOs.
100pL of the prepared cells were mixed with 1x10épfu (100pL of a 107pfu/mL dilution of
the high titer long term stock) and incubated at 37°C for 20min. 4mL of pre-warmed LB
medium was added followed by incubation at 37°C with vigorous shaking (300rpm). After 5
hours, one drop of chloroform was added (about 50uL) and the suspension was incubated
for another 15min at 37°C with shaking. The debris of the lysed bacterial cells was removed
via centrifugation at 13,000rcf, 4°C for 15min. DNasel was added to a final concentration of
20pg/mL, RNaseA to a final concentration of 8 pg/mlL, CaCl; to a final concentration of
10mM. The suspension was incubated at 37°C for 30min. Afterwards the suspension was
filtered using a sterile 0.45um syringe filter. The phage particles were precipitated (using
10% PEG-8000, 1M NaCl and incubation in ice water for 90min) and subsequently pelleted
via centrifugation at 16,000rcf, 4°C for 20min. The pelleted phage was re-suspended in SM
buffer (100mM NaCl, 8mM MgS04, 50mM Tris-HCI pH 7.6, autoclaved). PEG was removed

via addition of an equal volume of chloroform followed by slow vortexing and

centrifugation at 3,000rcf, 4°C for 10min. The purified phage suspension was stored at 4°C
until further use as scaffold material. [2]

Figure S5a shows a transmission electron micrograph of a purified A phage particle.
Figure S5b shows an agarose gel assay of the different steps of the phage purification
procedure after the small scale liquid lysate prep. The concentration of the purified phages
was estimated as described in Note S1.1 for the M13 phages. We compared the fluorescence
intensity of the purified A phage band to the intensity of the standard DNA marker with

known mass value.

liquid lysate

after DNas/RNase

— — — —
1.5kbp

— — —

24ng 36ng 48ng 60ng Pand

PEG precipitated phage [

supernatant of PEG precipitaion

— — —

1kb DNA ladder

Figure S5: (@) Transmission electron micrograph of a purified A phage particle. (b) 0.7% agarose gel
containing 0.5xTBE and 0.5pg/mL ethidium bromide run for 3 hours at 70V. We used 4 different
concentrations of the 1kb DNA ladder. For each concentration we measured the intensity of the 1.5kbp band
and together with the known mass value we derived an intensity-mass plot. Based on this intensity-mass plot
we estimated the concentration of the phage particles using the intensity of the PEG precipitated A phage
band.

Note S2.2: Denaturing Agarose Gel Electrophoresis of A-DNA and Phages

Native and denatured A-DNA (commercially available from New England Biolabs (NEB) as
well as our own) and A phage particles were compared on a 0.7% agarose gel containing
1xTAE buffer (40mM Tris, 40mM acetic acid, 1mM EDTA) containing 1M urea and
0.5ug/mL ethidium bromide. Denatured samples contained 8M urea and were incubated at
80°C for 5min prior to loading.l3! The gel was run for 3 hours at 5.5V/cm cooled in an ice

water bath and bands were visualized with ultraviolet light (image shown in figure S6).

The native NEB A-DNA results in a nice single band (lane 1). The denatured NEB A-
DNA smears over a range of more than 10kbp (lane 2). This indicates the high amount of
nicks in the commercially available A-DNA molecules, most likely due to mechanical
degradation from pipetting and storage. We ligated the NEB A-DNA with E.coli DNA Ligase
(New England Biolabs) to repair the backbone (4 hours incubation at 16°C followed by heat
inactivation at 65°C for 20min). To prevent the creation of long concatamers we added and
thermally annealed a 5-T overhang oligo complementary to one of the cohesive ends to the
A-DNA. Ligation was partly successful: less smearing was observed as well as a high amount
of material not entering the gel (lane 3). This indicates that the strategy to prevent
concatamers did not work sufficiently. Our own purified A-DNA (lane 4) as well as the
denatured phage particles (lane 5) show a nice single-stranded band. Note that there is a
band migrating at the same speed as the native A-DNA occurring in most denatured
samples. This might indicate that not 100% of the dsDNA molecules denature via the 5Smin

incubation step or a fraction of the DNA re-anneals afterwards.

1 2 a3 4 5
1kb DNA
ladder
ey
P
=
e ki g
— G
S—
own
; | nativel denatured —l
——

Figure S6: 0.7% agarose denaturing gel containing 1M urea. Lane 1: native NEB A- DNA. Lane 2: denatured
NEB A-DNA. Lane 3: denatured NEB A-DNA after ligation. Lane 4: denatured purified homemade A-DNA. Lane
5: denatured A-DNA directly from phage particles. (Denatured samples contained 8M urea and were heated to

65°C for 5min prior to loading on to the gel.)

10

Note S2.3: A-DNA Melting Curves

We measured the melting behavior of A-DNA in the presence of six different formamide
concentrations (figure S7). Each sample contained 5pug of A-DNA (Invitrogen), 1xTE buffer
(10mM Tris-HCl pH=7.6, 1mM EDTA), and 12mM MgCl>. Due to the spectral overlay of
formamide and DNA at 260nm we recorded the absorption at 270nm in a UV/Vis
spectrophotometer (JASCO V-650). The samples were heated to 97°C, cooled to 25°C and
again heated to 97°C in intervals of 0.1°C at a rate of 0.5°C per min. The shift of the melting
temperature in the presence of formamide to lower temperatures corresponds nicely with

the reported value of 0.64°C per volume percent of formamide.[*!

270nm
40 60 80
1,2 t t 1 t t t L t t t 1 1,2
] Formamide: I
14 — 0% L1
] — 10% |
1 — 20% -
0,8 —30% 0,8
§ 40%
] b [
S 0,6 >0% 0.6
(4] | L
£
o 4 |
£ 0,4- 0,4
=] [
O 4 |-
0,2 0,2
04 L0
02+ S

40 e 8o
Temperature [°C]

Figure S7: Melting curves of A-DNA in the presence of different formamide concentrations. The fact that the
blue curve is not showing the melting temperature as expected for 30% formamide is most likely due to a

pipetting error.

11

Note S2.4: Assembling Structures from A Phage Particles

Assembly of A DNA origami structures was accomplished in a one-pot reaction. 0.2nM
bacteriophage A particles were mixed with 10nM of every oligonucleotide staple strand
(reverse-phase cartridge purified, Bioneer Inc.) in 1xTE buffer (10mM Tris-HCI pH=7.6,
1mM EDTA) containing 12mM MgClz, 0.1% SDS, and 40% formamide. For the control
samples between 0.2 and 2nM of commercially available A-DNA (New England Biolabs) was
used instead of the phage particles. The mixture was subjected to a thermal annealing ramp
(using a PTC-225 DNA Engine Tetrad, M] Research) as described in figure S7. The samples
were dialyzed against 500mL 1xTE buffer (10mM Tris-HCl pH=7.6, 1ImM EDTA) containing
12mM MgCl; at 4°C overnight in 3.5kDa MWCO dialysis units (Slide-A-Lyzer MINI Dialysis

Unit 3.5kDa MWCO, Thermo scientific) with gentle mixing using a magnetic stirrer.

T(real)[| T (virtual)
80°C +—i | L 106°C
< I
z :
56°C + 5 dialysis - 82°C
25°C ; folding i . 51°C
4°C 4 | : 30°C
| L 1/
| | "
15min 100min overnight

Figure S8: The sample is heated to 80°C for 15min to denature the phage particles, release the genomic DNA
and melt the dsDNA. A temperature drop to 25°C in the presence of the high excess of staple strands prevents
re-annealing of the dsDNA. A nonlinear temperature ramp to 4°C over the course of 100min is applied to

assemble the structures. Overnight dialysis at 4°C is used to remove the formamide as well as the SDS.

12

Note S2.5: Agarose Gel Electrophoresis of A DNA Origami Structures

Folded constructs were electrophoresed on 0.7% agarose gels containing 0.5xTBE buffer
(45mM Tris, 45mM boric acid, ImM EDTA), 11mM MgCl; and 0.5pg/mL ethidium bromide
for 3 hours at 5.5 V/cm cooled in an ice water bath. Bands were visualized with ultraviolet

light.
Note S2.6: Atomic Force Microscopy of A DNA Origami Structures

Samples were imaged in tapping mode using a Multimode III AFM (Veeco Metrology Group,
now Bruker AXS). Imaging was performed in 1xTAE buffer solution containing 12mM MgCl,
with SNL-10 sharp nitride cantilevers (Veeco, now Brucker AFM Probes) using resonance
frequencies between 7-9 kHz of the 0.24 N/m force constant cantilever. 5uL of the dialyzed
origami solution was dropped onto a freshly cleaved mica surface (Plano). After 5min, 25uL
of buffer solution was added to the sample on the mica surface. Imaging parameters were
optimized for best image quality while maintaining the highest possible set point to
minimize damage to the samples. Images were post-processed by subtracting a 1st order

polynomial from each scan line.

Note S2.7: Transmission Electron Microscopy of A DNA Origami Structures

For TEM imaging, 3uL of the dialyzed origami solution was adsorbed onto glow-discharged
formvar/carbon-coated TEM grids (Plano) and then stained using a 2% aqueous uranyl
formate solution containing 25mM sodium hydroxide. Imaging was performed using a
JEM1011 transmission electron microscope (JEOL) operated at 100 KV equipped with a
FastScan-F114 camera (TVIPS).

13

Figure S9: Additional AFM and TEM Images of A DNA Origami Structures

a) AFM: folded from commercially available A DNA: ¢) TEM: folded directly from bacteriophage A
. .3

~ .
“ /400nm . A

>
.

Figure S9: (a) AFM images of samples prepared with commercially available A-DNA. Left: Structures folded
with 2nM A -DNA. (Note: the small M13 based triangular structures in the upper most left image result from a
tip used before to image these triangles. However, they serve as a nice physical scale bar.) Right: The same
sample imaged with higher magnification. (b) AFM data of structures folded directly from A phage particles.
The high amount of phage protein debris covering the surface is clearly visible. (c) Negative stain TEM images

of structures folded directly from A phage particles.

14

Supplementary Note S3: DNA Origami Designs and DNA Sequences

Note S3.1: Design of M13 DNA Origami Structures

All M13 based structures were designed using the software package caDNAno (version
0.23, http://www.cadnano.org/legacy).[5l The 2D rectangle was slightly modified from the
original version described by Rothemund: the scaffold was permutated and the global
twisting was reduced by the introduction of targeted deletions.[®7] The ‘M13’ writing was
realized by inserting dumbbell shaped hairpins at the positions indicated in figure S10 (see
reference [6] for the hairpin sequence). The scaffold routing of the six helix bundle was as
well permutated compared to the original version described by Douglas et al.lll The 24 helix
bundle as well as the three layer block were used as previously described without any

changes.[8°] The four designs are shown in figures S10-13.

Note S3.2: Design of the A DNA Origami Structure

For each of the two single strands of the double-stranded molecule we designed a separate
structure. These two structures are geometrically identical but chemically distinct
rectangles, each 100x400nm in size. Each of these monomers consists of 154 adjacent
antiparallel double helices of 320bp in length and is folded by an individual set of staples
(3150 individual oligonucleotides of 32nt length in total). The two monomers are
connected via an extra set of staples and together form the complete 200x400nm large
rectangular object. The scaffold is routed through the A DNA origami structure similar to the
M13 based 2D rectangle. Staple double crossovers are implemented every 32 base pairs. A
python script (appendix S1) which uses the scheme shown in figure S14 was used to draw
the entire design of the A DNA origami structure (figure S16), to save a caDNAno compatible
file and compute all the staple sequences. Since the caDNAno software was not able to open
the generated file (the software crashed due to the high number of bases populated), we
used the script to generate a truncated design with only 12 double helices as a control. The
staple sequences generated by the script matched perfectly with the sequences generated
independently by caDNAno. Figure S15 shows the caDNANo design of the truncated 12

helix tall structure. (A complete list of all staple sequences used is available upon request.)

15

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]
(]

S. M. Douglas, J. J. Chou, W. M. Shih, Proceedings of the National Academy of Sciences 2007, 104, 6644-
6648.

J. Sambrook, Molecular Cloning: a Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory
Press, 2001.

E. Hegedus, E. Kokai, A. Kotlyar, V. Dombradi, G. Szabo, Nucleic Acids Research 2009, 37, e112-e112.
R. D. Blake, S. G. Delcourt, Nucleic Acids Research 1996, 24, 2095-2103.

S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Nucleic Acids
Research 2009, 37,5001-5006.

P. W. K. Rothemund, Nature 2006, 440, 297-302.

Y. Ke, S. Douglas, M. Liu,]. Sharma, A. Cheng, A. Leung, Y. Liu, W. Shih, H. Yan, Journal of the American
Chemical Society 2009, 131, 15903-15908.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, F. C. Simmel, A. 0. Govorov, T.
Liedl, Nature 2012, 483,311-314.

[. H. Stein, V. Schiiller, P. Bohm, P. Tinnefeld, T. Liedl, Chem. Eur. J. of Chem. Phys. 2011, 12, 689-695.

16

k== 82¢ oze e o€

Figure S10:

Design of the 2D Rectangle

962 88e 082 e 4 74 k124 oz ceT YT ale 80C 00z (13 8L oLl 89l 091 (13 L 44 %€l -4 (V4] (423 01

Figure S11:

Design of the 6 Helix Bundle

10
1]
12
13
14
15
16
17
18
19
20
21
22
23

322 329
32 329

Figure S12: -

315
lGrcranssr
TVVTTT
315

TIV395705577I 01

VTS

Design of the 24 Helix Bundle

Ircacdrcaca

308

287 204 301

2713 280

259 266
259 266

238 245 252
238 245 252

224 231
224 231

217

210

186 203

188

182

175

168

161

154

o k4 —F ~

4)
- ° ° ~ e = 2
6 - a ® v 0 o~ ® o s 8 2 ¥ 2 et e 2 8 5 8 R

Figure S13:
Design of the 3 Layer Block

o 8 16 24 32 40 48 56 64 72 80 88 96 104 12 120 128 136 144 152 160 168 176 184 182 200 208 216
o CGGCTTTCCCCGTCARGCTCTAAATCGGGGGCTCCCITGATAGACGGTTTITCGCCCTT TGACGTTGGAGTCCACGTTCTTITARTAGIGGACT LTCCAANCTGGANCAACACTCANCCCTATCTCG GGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCANACAGGATT
e e e o e R IR B e S S B e R
, . I Cocccecilccacacbac imeerhcceteaceredberinc deeacaedeoccacedrirrac ccerac hececcciven cecqrcacecbacncaclicaccaececrcescerocs
2 rrdrcaconrlroccandecorseirermadbecerrillrececengerllocreeddfroranfice drrsnacdfecrcor snacrafledbarcdeererrflecererdycreardld cacc Imu aracocadbccoc
R T P T v SV AT SvhffreTs Ty R SRR SRS e | it
e e | L | Srmy B e T = e Sremem e | S P
4 TGTAAATAATCATTTCAACGATTEMGCGTCANAATGT, ATTIC I CorrrecTarTacanTddcToaCadyaaTATTERTCTGGA < 4 . ACTHATTAGGCACCCCAGEAITTACACHITATGCTTIC
s O T oA ACHeAT ACAJlccrerJhceriathgectanchsater TATTTiAsTorepartcar)ireat e ATacc AT cergraraanajhortarcdbisacarcenca
ST T T TS I T I T T TRt TS T T g T T T T T][, ST T ST TS T T
6 TN TA G GACCG Ol CA T T T A T G{T T (TG T GG T (G TCGG AT T, TAATIGGCGA TG TAGGGCTATCAGTINGCGCATTARAGACTANTAGILCTICGGTACCINGGGATCCT ACTHINGAGGAGGICTCAC coancala caflicorccrdscag ccoorTa
e en Tslfeoy oV TSI D o T D VIS p I T Ty v st esvaow
; acacrlfeacocnfence AEkecaJ A Crrdcroancefguuatarglanceerfarcastarcroorchqrract Alhrcuncaffrencrogac Tochdzcererqacterefborecredec et
s | pegercomdborrenduerclacrediareardfarerrdie galscccrfhaarcrfilerrarharcer daacaribrracaffacrredreasrriflbcccdeas geafrearecd I roscrelfeerascdeccesrcliarec
STV Tvs v vV s Vv Tvev v i T v v vyl SHvirs)
v I e e e | B = : - I e | e St e
10 P e e TAATITT ATGGTAQETT (TS CITCCATTATTCARAAGTATAYCCARACMATCAGGATITATATT I CAG T CQpaTacce scadecoacoofiroacTads ceader
" CreagagianarallerancagbaccrrHlcatetoqaoe ncqhrancocdbroccerfzceriyisantace]lrraclare Teoerlhreccartieac cophccnce |lcacireqhasrerelciarca
L e R 1 7][‘3, STV T TR I S T e
12 lccaTrannlAnGGTANTTCANATEAARTTGTTARATGTANNITAATTTTIGTTTTC Anseerrrlerrrcartilrcrrerrlrrecrcatidrantroaharcant T GATTCTTGHEGTTGCTGCT G accagealccacgeTdlacerrcralcancroclificacer IIATGAGGATGTG
TvHroTT T v T SiSTvT SsvTfrrIvoTtIT e R el e e | v e e
T Tt e vy e s v wvIflovvoTvaltovITT 7 573
b s | e e e e B J,,J][ST e ™
16 ATGITGHCGTTGTIRAATAT GATTCTCAATT IACT LA CTGGT MG AT T TANATAACGIYTATGATAICTARAC TrrrrcracTdbTHITTTTCCOTaA caGRaTCCCTHEACCACS TQIATCTCT AATTC 14
" TenoghiTarTa|fachatafhaker ; : circalfrreaceifar Counglerrrcaclberceacdlaccacoian cacsuanccse e res
ST TSI T T PO T TS ,][,g | Bk hs M
18 looantcatilace < chtratrentrearrrciiicatacrdoranntildon acdararrarhiirrcrrarlicacenctiiarcrarrorrontalllcacdbodacroe STTTTACAR CGTYTGACTGGGANRA scerracccancTiiatceccrrocaceadareccectl
EEee | ST e e e e e DymsffrvovivisroTv s > T iy sl
© BRETH | VR | e JEER | R RPN Y SRR | TuchiaTacaadherTarcferTrcagr ceoplacrors PR v A
2| eecoreduandoroodboerdlumoogadlranlecrdlice deecsedleacerfecrafleccrcodsrrerdboocdungedlrreccdoredlloca dleces socrendrec
Ty e sl s v it e > SR e T
T e T T TV T][e = s IJ T
22| prasdromstrodberceerfirercrciararrageocrcanfiacecrcdfacinr sorfsrrcacrfibirrorciiiorer rrederarrrflbrerrarrrer sraaderaccrrscoatfastccallforrordeccacoatfasrccadeocarrods
” Caroafhraccas fhocsarchfaces JAER | OO0 OO A o Ta Teafhuaranrhece 1ecaccrrelfarccc)lcrraafidancars
ST T DTS TS T DS T T oS TP T T v TS T s3s AT TS s TS TS T YIS T T T
24 frrraranlrreccadcryraTehToTaTTTrCTACGTIIGCTANCATACTGC ATy AGGAGTCTTANNCATGCCAIGTTCTTT TATICCGTTATT AAAAAT ToatTalanCoa AT T TAMTGICGANTTTIAACAANATIATTANC LA CAATTITAAATATIIGCTTATA
o fovrw s o Fre sty STyl e e e
" RS ent hurroangrrescacireantadianserc]far_sertraccas Teeciar B | SRESWM SRS OVES RN EEEER W c
28| sedcorelercedecoredreorndbooreerllocrand oo e e lecrcndreceraatiior sl csce s aaheredlldbon ool drernarniferca asreacdroanacedrir
=" e e v sty s s i 1 TV
ot e e “,IM, L mmm il s SR e e e s o
28 rrorgiroscoatfcrassaijcoracciorancactiocoars satdecoacrdroaceaallcoarredioraaratirereqrrcoareatdiroara rrreacteroaccflicerrroqiaccorr rorifraccr rracrdscocarrdeat
” Chrroaghisacar|facciactbiacacolzececoar arr Tiarcglcarmasgaec PR SRR SO P | M Ty e Coarandartyridanceey
TS T TS S T TR T T T T T s T T v .][,mm TS TR T T T T T
30 traacrorafaTacocacacTorraMTcancadacToacclorrananlcTTATTAdAG TACK CroTiCATCANAAGCCATGHAT TACTGGA TAbaTAATGTTTIRGGTACA LTS CTTTATGCTCTGAYSCTTTATIGCTTAA I GCTAMYTCTTTGCqITGCCTaY
e v TP by T Tl e
o cccrarlfcceancfparrarrare Craffancacefoa cactscr corrralfcocernyrocreachtencoctharanerjfcreegics ciourc)frrcracuarasabiacears
; STt i T v g v e
34 s d ICCTTTABTTGITC TCaCTCACTanS Tyl G 11611 anaflccaTaclbanaa T TETTTACTARCGTCT coaka I AAsACATIGTTy GAG ATATTCMACAATTANGCTCT Iccods IGAlCCT
" : REFEHEH | BN HEHE R AL VPRE RO | P . GIANTec Asghoct kot TacA)bracr idarvac
| S s][0 O DTS TTTTie <o
36 ocrecrafceTandeaTcccs scadecrrranicccro ccrcadlon TATATCHTTATCCQGGCCGATHCTTCT ATIGT] Heonatrablhacaceathrr ToalliTcTTTCAGCTT trantcrrrrreariifaarccodrrracTrdronc
Ty mrre e e e 7 T
o Seces AR DS SO0 | EEEEE MO DO SUSHHH | TR Craargery vaskilacrs CoalareaceAraanrcatdasrens
38 CGCGGATTTCGCACART [ATCAGGR4ATGATAYAMATCTC ITGTACTITG T yvhv\n ATAATCRETGGGGG CAMAGATIAGTGTTT GIGTaTdlTT uvu(uv‘n' AG LCMTGAATATITTATGACKAT CCGCAbTATTGGAMGCTATCCAGTCTARACATT
ST T T s rris e — : jfirm T T e o
® / relfrentaagy ey reaferer [e A I Hii
40 LLTACTACTCOTIRTGGTGTINCTCGT S AGqUITATICATGAAT R LI Tyt CGTTGATTIGRETAAT TCCGGIHCTTGTCANGATTA 1roatcapcerdla 5 [LLATGAT4STGITCHLTTACT LG TTCCTTHEGOCGTTATGTATCTGUAT
u ARV | R MR MRS AU | VIR ERNTE AR R BTN P | B8 TIAIACALTooAAAGAT YAt CACTIbACAT T AgGAA AL

VYT VI TSIV IVVVITRVYOTIOV VI TV TVY VI TTVV1 D07V IvI0) IP&V VI 13T I0V3) DV TVVIVIOSII¥I 153 153¥7 33 TTITT LTIV OV IO ¥V ITVITI 0TIV IDI T TT 1[I ¥V IV I0T 93V LTI Tv¥ 9I¥5 T IV 313 TVV V100 I IV ITo [0 IV¥oTIov1

o 8 16 24 32 40 48 56 684 72 80 88 96 104 12 120 128 136 144 152 160 168 176 184 192 200 208 216

R

g 8 & € 8 8 2 8 8B B N8N B B R BB

8

8

Figure S14: Design of the A DNA Origami Structure

“Reqular”

[

heli 21

helizy

heli2y+1

helie2ys2

heli2ys3
el 2y+4

helie2ys

168 0r488)

“Aseams”

3o ss n2s
istoran na7
15900479 n9

1

b
15 orass 7
worso nns
Worsn

L 167 or 487

'
helzy2 L

i3

199 or 519

heli2y1

helizy

heli2y+1

helie2ys2

heli2ys3
heli2y+4

helie2yss

helizy 2

heli2y-1

helizy

heli2ys1

el 2y+2

el 2y+3
helizys4

heli2y5

s

L

helie2y2

heli2y-1

helizy

el 2y+1

heli2ys2

heli2ys3 { |

heli2y+4

-

helie2yss

“RightEdge”

helizy2

heli2y-1

helizy

heli2ys1

helie2ys2

helie2ys3
heli2ys4

helie2ys

16bpzones 0

Hete
> 2
s
x 8
x
x
= K
x
x
x
x
x
s -
P
H H
£ g
A

BPindex Deletionornot Counter!
15 Deletion o
+16 None 1
+16 Deletion 2
+16 None 3
+16 None 4

Reset counter 1 every 5 times 16 bases.
Reset counter 2 when counter 1 i reset.
‘Count up counter 2 when deletion is added.

g

Counter2

Figure $15: Truncated A DNA Origami Design

The caDNAno file generated by the python script (Appendix S1)
is to big to be opened with the caDNAno software. This trunca-
ted design with only 12 double helices instead of 154 was gene-
rated to check if the design as well as the computed sequences
are correct.

Mmoo M om m o m o m oo m o B om0 o

W % om o® 4w o omomom o w o owom

R R E E R R E R

W ® m e 4 % o7mom % mom

Figure S16: Entire Design Schematics of the A DNA Origami Structure

Appendix S1: Python code used to draw the design of the A DNA origami structure and compute the staple sequences

#1/usr/bin/env python
encoding: utf-8

Coded by B. Hogberg

Draws the design for the lambda double-rectangle, saves a caDNAno-compatible file and
computes the staple sequences.

For a 12 helices tall rectangle, the staples generated by caDNAno and this script matches
perfectly.

Python standard libraries
import string

import caDNAnoFileHandlerClass as caDNAno

def caDNAnifyScaffold(fragments,VirtStrands):

Describing each fragment like this:

[[at this helix,at this base], [coming from helix,base], [at this helix,go to this
base], [continued by this helix, this base]]

So a list of fragments will be:

[[[helixl,basel], [fromHelixl,fromBasel], [goToHelixl,goToBasel], [toHelixl,
toBasel]],

[[helix2,base2], [fromHelix2,fromBase2], [goToHelix2,goToBase2], [toHelix2,
toBase2]]]

#

for frag in fragments:
currStrandIndex=frag[0](0]
nextStrandIndex=frag[2](0]
rag[1](0]
if currStrandIndexs2
evenStrand=True
else:
evenStrand=False
currBpIndex=frag{0][1]
if evenStrand:
nextBpIndex=frag[0][1]+1
else:
nextBpIndex=frag(0]{1]-1
prevBpIndex=frag{1][1]
Defining indecies to loop through if even strand left to right
if odd strand right to left.
if evenStrand:
indecies=range(frag(0][1],frag(2][1])
else:
indecies=range(frag[2][1],frag[0][1])[
for bp in indecies:
VirtStrands[currStrandIndex]

1]

[currBpIndex]=[prevStrandIndex, prevBpIndex,nextStrandIndex,nextBpIndex]
prevStrandIndex=currStrandIndex
prevBpIndex=currBpIndex

currBpIndex=nextBpIndex
if evenStrand:
nextBpIndex=currBpIndex+1
else:
nextBpIndex=currBpIndex-1
Last bp:
VirtStrands[frag[2][0]][£frag(2][1]]=[prevStrandIndex,prevBpIndex, frag(3]
[0],frag(3][1]]

def caDNAnifyStaples(fragments,VirtStrands,printOut=False):

Same as above but with changed directions of odd and even strands

rag[0][0]
rag(2][0]
prevStrandIndex=frag[1][0]
if currStrandIndex$2=:
evenStrand=True
if not frag(0][1l]>frag[2](1]:
print 'Strand in wrong direction!'
return

evenStrand=False
if not frag[0][1]<frag[2][1]:
print 'Strand in wrong direction!'
retu
currBpIndex=frag[0][1]
if evenStrand:
nextBpIndex=frag[0]{1]-1
else:
nextBpIndex=frag[0][1]+1
prevBpIndex=frag[1][1]
Defining indecies to loop through if even strand left to right
if odd strand right to left.
if evenStrand:
indecies:
else:
indecies=range(frag[0][1],£rag[2][1])
for bp in indecies:
VirtStrands[currStrandIndex]
[currBpIndex]=[prevStrandIndex, prevBpIndex,nextStrandIndex, nextBpIndex]
if printOut:
print [prevStrandIndex,prevBpIndex,nextStrandIndex,nextBpIndex]
print VirtStrands[currStrandIndex][currBpIndex]
prevStrandIndex=currStrandIndex
prevBpIndex=currBpIndex
currBpIndex=nextBpIndex
if evenStrand:
nextBpIndex=currBpIndex-1
else:
nextBpIndex=currBpIndex+1
Last bp:
virtStrands[frag(2][0]][frag[2][1]]=[prevStrandIndex,prevBpIndex,frag[3]
[0],frag(3](1]]
if printout:
print VirtStrands[currStrandIndex][currBpIndex]

ange (frag[2][1],£rag[0][1])[::-1]

ERBBIAIAAAAAIS

Variables

#

HRERBRARAAAAAAH

lastBpIndex=671

lastStrandIndex=155

1£tBrPt=[0,168] # 5'-end of strand is at [helix, base]
rghtBrPt=[lastStrandIndex,487]

HEHHAFHABHAAHAABHAAIAAIAAS
#

Some Initialization...
#

HERBRRARAAARRIIRAAAAAIIS

obj=caDNAno.caDNAnoFileHandler ()

obj.initializeEmpty/()

Make empty virtual scaffold strands:

scaffvirtStrands=[[[-1,-1,-1,-1] for i in range(lastBpIndex+l)] for s in
range (lastStrandIndex+1)]

Make empty virtual staple strands:

stapvirtStrands=[[[-1,-1,-1,-1] for i in range(lastBpIndex+l)] for s in
range (lastStrandIndex+1)]

B
#

Scaffold Routing

Make a list of deletion positions

deletions=[]
hile bp+5%16 < lastBpIndex:
insertedDeletions=0
for i in range(5):
bp=bp+16
if i%2; and insertedDeletions<2:
deletions.append(bp)
insertedDeletions+=1
skipMaster=[0 for i in range(lastBpIndex+l)]
for deletion in deletions:
skipMaster[deletion]=1
skipVirtStrands=[skipMaster for i in range(lastStrandIndex+l)]

First two strand fragments:
firstStrandFragmentsO=([(0,88], [1,88], [0,322],(1,322]],
[ro,408],1,408], [0,631],(1,631]]]
caDNAnifyScaffold(firstStrandFragments0,scaffvirtStrands)
firstStrandFragmentsl=[[[1,631],[0,631], [1,488], [2,488]],
[11,487],(2,487], [1,408], [0,408]],
(11,322],(0,322], (1,168], [2,168]],
[1,167],(2,167], [1,88], [0,88]]]
caDNAnifyScaffold(firstStrandFragmentsl,scaffvirtStrands)

Last strand fragments:
lastStrandFragments=[[[lastStrandIndex,642],[lastStrandIndex-1,642], [lastStrandIndex,
323],[lastStrandIndex-1,323]],

[[lastStrandIndex,322],[lastStrandIndex-1,322], [lastStrandIndex,3],
[lastStrandIndex-1,3]]]

caDNAnifyScaffold(lastStrandFragments,scaffVvirtStrands)

All the other strands
for s in range(2,lastStrandIndex):

if s% :
Even strands
betweenFragments=[
[rs,31, [s+1,3], [s,167], [s-1,167]],
[[s,168], [s-1,168], [s,322], [s+1,322]],
[[s,323], [s+1,323], [s,487], [s-1,487]],
[[s,488], [s-1,488], [s,642], [s+1,642]]
else: # 0dd strands

betweenFragments=[
[[s,642], [s-1,642], [s,488], [s+1,488]],
[[s,487], [s+1,487], [s,323], [s-1,323]],
[[s,322], [s-1,322], [s,168], [s+1,168]],
([s,167], [s+1,167], [s,3], [s-1,3]]

1
caDNanifyScaffold (betweenFragments,scaffvirtStrands)

Insert breakpoints
scaffVirtStrands[1£tBrPt[0]][1£tBrPt[1]][0
scaffvirtStrands[1ftBrPt[0]][1ftBrPt[1]][1]
if 1ftBrPt[0]%2==0:

mod=-1
else:

mod=+1
scaffvirtStrands[1ftBrPt[0]][1ftBrPt[1]+mod][2
scaffVirtStrands[l£tBrPt[0]][1£tBrPt[1]+mod][3]=-1

scaffVirtStrands[rghtBrPt[0]][rghtBrPt[1]][0]=-1
scaffVirtStrands[rghtBrPt[0]][rghtBrPt[1]][1]
if rghtBrPt[0]%2
mod=-1

mod=+1

scaffVirtStrands[rghtBrPt[0]][rghtBrPt[1]+mod][2]
scaffVirtStrands[rghtBrPt[0]][rghtBrPt[1]+mod][3]

els

Staple strands

Regular ones:
regularStartBases=[5%8,9%8,13%8,25%8,29+8,33%8,45%8,49%8,53%8,65%8,69%8,73%8]
for startBase in regularStartBases:

n=startBase

topStaple=[
[ro,n+23],(-1,-13,[0,n],[1,n]],
(r1,n1,00,n],[1,0+7],[-1,-1]]

]
caDNAnifyStaples (topStaple,stapvirtStrands)

bottomStaple=[
[[lastStrandIndex,n+8],[-1,-1],[lastStrandIndex,n+31],
[lastStrandIndex-1,n+31]],
[[lastStrandIndex-1,n+31],[lastStrandIndex,n+31],[lastStrandIndex-1,n
+24],(-1,-11]1

1
caDNAnifyStaples (bottomStaple,stapVirtStrands)

for y in range(2,lastStrandIndex,2):
n=startBase

staplel=[
[ly,n+23], [-1,-11, [y,n+16], [y-1,n+16]],
[[y-1,n+16], [y,n+16], [y-1,n+31], [y-2,n+31]],
[[y-2,n+31], [y-1,n+31], [y-2,n+24], [-1,-1]]

1
caDNAnifyStaples(staplel,stapvirtStrands)

staple2=[
[ly-1,n+8],([-1,-1], [y-1,n+15], [y,n+15]],
[[y,n+15], [y-1,n+15], [y,n], [y+1l,n]],
[ly+l,n], [y,n], [y+1,n+7], [-1,-111

]
caDNAnifyStaples(staple2,stapVirtStrands)

Left edge
topLeftCorner=[[[2,31],[-1,-1],[2,3],[-1,-1]1]
caDNAnifyStaples (topLeftCorner,stapVirtStrands)

botLeftCorner=(
[[lastStrandIndex,3],[-1,-1],[lastStrandIndex,39], [lastStrandIndex-1,39]],
[[lastStrandIndex-1,39],[lastStrandIndex,39], [lastStrandIndex-1,32],
[-1,-11]

1
caDNAnifyStaples (botLeftCorner,stapVirtStrands)

for y in range(4,lastStrandIndex,2):

n=8
snakeStaple=[
[[y,n+23], [-1,-1], [y,n+16], [y-1,n+16]],
[[y-1,n+16], [y,n+16], [y-1,n+31], [y-2,n+31]],

[ly-2,n+31], [y-1,n+31], [y-2,n+24], [-1,-1]]
1
caDNAnifyStaples (snakeStaple,stapVirtStrands)

stapleStaple=(
[ly-1,31, (-1,-11, [y-1,23], [vy,23]],
[ly,23]1, [y-1,231, [y,31, [-1,-1]]

]
caDNAnifyStaples(stapleStaple,stapVirtStrands)

At seams
seamPositions=[168,488]
for n in seamPositions:

topl = [[[0,n+23],[-1,-1],([0,n-8],([-1,-1]]]
caDNAnifyStaples (topl,stapVvirtStrands)

top2 = [
[10,n-91,[-1,-11,10,n-32],[1,n-32]],
[(1,n-32],[0,n-32],[1,n-25],(-1,-1]]

1
caDNAnifyStaples (top2,stapVirtStrands)

botl = [[[lastStrandIndex,n-24],[-1,-1],[lastStrandIndex,n+7],[-1,-1]]]
caDNAnifyStaples (botl,stapVirtStrands)

bot2 = [
[[lastStrandIndex,n+8],[-1,-1], [lastStrandIndex,n+31],[lastStrandIndex-1,n
+31]],
[[lastStrandIndex-1,n+31], [lasts Index,n+31], [lastS Index-1,n+24],

[-1,-111

1
caDNAnifyStaples (bot2,stapVirtStrands)

for y in range(2,lastStrandIndex,2):
leftSnake=[
[ly-1,n-24], [-1,-1], [y-1,n-17], [y,n-1711,
[ly,n-17], [y-1,n-17], [y,n-32], [y+1,n-32]],
[[y+1,n-32], [y,n-32], [y+1,n-25], [-1,-1]]

]
caDNAnifyStaples(leftSnake,stapVirtStrands)
leftRound=[
[ly, n+7], (-1, -11, [y, n-16], [y-1, n-1611,
(ly-1, n-16], [y, n-16], [y-1, n-9], [-1, -1]]

caDNAnifyStaples(leftRound,stapVirtStrands)

rightRound=[
[(y-1,n-8],[-1,-1],[y-1,n+15],[y,n+15]],
[[y,n+15], [y-1,n+15], [y,n+8],[-1,-1]]
1

caDNAnifyStaples (rightRound,stapVirtStrands)

rightSnake=[

[ly,n+23], [-1,-11, [y,n+16], [y-1,n+16]]1,
[ly-1,n+16], [y,n+16], [y-1,n+31], ([y-2,n+31]],
[[y-2,n+31], [y-1,n+31], [y-2,n+24], [-1,-1]]

]
caDNAnifyStaples(rightSnake,stapvirtStrands)

Stitch
n=328

topl = [[[0,n+23],[-1,-1],([0,n-8],(-1,-1]]]
caDNAnifyStaples(topl,stapVirtStrands)

top2 = [
[(0,n-97,[-1,-1],[0,n-32],[1,n-32]],
[[1,n-32],[0,n-32],[1,n-25],[-1,-1]]

1
caDNAnifyStaples (top2,stapVirtStrands)

botl = [[[lastStrandIndex,n-24],[-1,-1],[lastStrandIndex,n+7],(-1,-1]]]
caDNAnifyStaples(botl,stapVirtStrands)

bot2 = [
[[lastStrandIndex,n+8],[-1,-1],[lastStrandIndex,n+31],[lastStrandIndex-1,n+31]],
[[lastStrandIndex-1,n+31], [lastS: Index,n+31],[lasts: Index-1,n+24],
[-1,-1]]

caDNAnifyStaples(bot2,stapVirtStrands)
for y in range(2,lastStrandIndex,2):
leftSnake=[

[[y-1,n-24], [-1,-1], [y-1,n-17], [y,n-17]],
[ly,n-17], [y-1,n-17], [y,n-32], [y+1,n-32]],
[[y+l,n-32], [y,n-32], [y+1,n-25], [-1,-1]]

1
caDNAnifyStaples(leftSnake,stapvirtStrands)
leftRound=(
[ly, n-1], -1, -11, [y, n-16], [y-1, n-16]],
[ly-1, n-16], [y, n-16], [y-1, n-1], [-1, -1]]
1
caDNAnifyStaples (leftRound,stapVirtStrands)
rightRound=[
[{y-1,n],[-1,-1],[y-1,n+15],[y,n+15]],
[[y,n+15],[y-1,n+15],[y,n],[-1,-1]]
1
caDNAnifyStaples (rightRound,stapVirtStrands)
rightSnake=[
[[y,n+23], [-1,-13, [y,n+16], [y-1,n+16]],
[[y-1,n+16], [y,n+16], [y-1,n+31], [y-2,n+31]],
[[y-2,n+31], [y-1,n+31], [y-2,n+24], [-1,-1]]
1
caDNAnifyStaples (rightSnake,stapvirtStrands)

Right edge

topRightCorner={
(ro,642],(-1,-11,[0,616],[1,616]]1,

([1,616],[0,616],[1,623],(-1,-1]]
caDNAnifyStaples (topRightCorner,stapVirtStrands)
botRightCorner=[[[lastStrandIndex,624],[-1,-1],[lastStrandIndex,642],[-1,-1]]]

caDNAnifyStaples (botRightCorner,stapVirtStrands)

for y in range(2,lastStrandIndex,2):

n=616
snake=[
[[y-1,n+8],([-1,-1], [y-1,n+15], [y,n+15]],
[[y,n+15], [y-1,n+15], [y,n], [y+1,n]],
[ly+l,n], [y,nl, [y+1l,n+7], [-1,-111

caDNAnifyStaples (snake,stapVirtStrands)

stapleStaple=[
[ly,642],[-1,-1],[y,632],[y-1,632]],
[(y-1,632],(y,632],[y-1,642],[-1,-1]]

1
caDNAnifyStaples(stapleStaple,stapVirtStrands)

Erase staples at top to make room for notches.

Then edit the bases that needs change.

for i in range(88):
stapVirtStrands[0][i]=[-1,-1,-1,-1]
stapVirtStrands(1][i]=[-1,-1,-1,-1]

for i in range(323,408):
stapVirtStrands(0][i]=[-1,-1,-1,-1]
stapVirtStrands[1][i]=[-1,-1,-1,-1]

A

notchChangeA=([(2,63],(-1,-11,(2,55],(2,54]]]
caDNAnifyStaples (notchChangeA, stapvirtStrands)

B

stapVirtStrands[2]([87]=[-1,-1,2,86]

#C

notchChangeB=[[[0,103],(1,103],(0,88],(-1,-1]]]
caDNAnifyStaples(notchChangeB, stapVirtStrands)

D

notchChanged=[[[0,322],[-1,-1],[0,296],[1,296]]]
caDNAnifyStaples(notchChangeD, stapVirtStrands)
#E

notchChangeE=[[[1,312],(2,312],(1,322],(-1,-1]]
caDNAnifyStaples (notchChangeE,stapVirtStrands)
F

#
notchChangeF=[[[2,351],(-1,-1],(2,328],(-1,-1]]
caDNAnifyStaples(notchChangeF, stapVirtStrands)

#G
notchChangeG=[[[2,407],[-1,-11,(2,392],(3,392]]]
caDNAnifyStaples (notchChangeG, stapvirtStrands)
#H

notchChangel=[[[0,423],[1,423],(0,408],(-1,-1]]
caDNAnifyStaples (notchChangeH, stapVirtStrands)
#1I

notchChangeI=[[[2,383],[-1,-1],[2,360],(3,360]]
caDNAnifyStaples (notchChangel,stapVirtStrands)

J - scaffold

for i in range(13):
scaffvirtStrands[(2][i]=[-1,-1,-1,-1]
scaffvirtStrands[3][i]=[-1,-1,-1,-1]

scaffvirtstrands(2][13]=(3,13,2,14)

scaffVirtStrands[3][13]=[3,12,2,13]

J - staples

for i in range(13):
stapVirtStrands(2][i]=[-1,-1,-1,-1]
stapVirtStrands(3][i]=[-1,-1,-1,-1]

stapvirtStrands[2](13]=(2,12,-1,-1]

stapVirtStrands[3][13]=[-1,-1,3,14]

K - scaffold

for i in range(632,643):
scaffvirtStrands[0][i]=[-1,-1,-1,-1]
scaffvirtStrands[1](i]=[-1,-1,-1,-1]

scaffVirtStrands[0][631]=[0,630,1,631]

scaffVirtStrands[1][631]=[0,631,1,630]

K - staples

for i in range(632,643):
stapVirtStrands[0][i]=[-1,-1,-1,-1]
stapVirtStrands[1][i]=[-1,-1,-1,-1]

stapVirtStrands[0][631]=[-1,-1,0,630]

stapvirtStrands(2])[632]=[2,633,-1,-1]

HHHHAAAAAAARAA AR ATRARARATATAAATATAAAAAAARAR AR A

Writing caDNAno compatible file

% %

for i in range(lastStrandIndex+l):

obj.appendStrand(num=i,scaf=scaffVirtStrands[i],stap=stapVirtStrands(i],skip=skipVirtStra
nds(i],row=i,col=1)

#obj.printBasicData()
obj.writeCaDNAnoFile('lambdaRectangle.json')

B 2

Printing out the staple sequences

% ¥

def reverse(sequence):
"""Returns the bases in reverse order
return sequence[::-1]

def complement_to(sequence):
""Returns the wc-complement to the sequence"""
comp = {'a':'T', 'A':z'T', '
'D':'D', '?':'?'}
temp_complement =
letter in sequence:
if letter in comp:
temp_complement = temp_complement + comp[letter]
return reverse(temp_complement)

c':'e', 'C':'G', 'g

def stripped seq(raw_sequence):
""Clean the input sequence from unnecessary characters

:nd makes the bases uppercase”

‘et

uppercase = {'a':'A', 'A':'A
temp_seq ra = '’
for letter in raw_sequence:
if letter in uppercase:
temp_seq_ra = temp_seq_ra + uppercase[letter]
return temp_seq_ra

First populate the virtual scaffol strands:

make an empty (='?') set of virtual strands
wSequVirtStrs=[['?' for i in range(lastBpIndex+l)] for s in range(lastStrandIndex+1)]

input_file = file('LambdaForwardStrand.txt', 'r')
scaffoldLeftStr = stripped seq(input_file.read())
input_file.close()

input_file2 file('LambdaReverseStrand.txt','r")
scaffoldRightStr = stripped_seq(input_file2.read())
input_file2.close()

scaffoldLeft=1ist (scaffoldLeftStr)
scaffoldRight=1ist (scaffoldRightstr)

Left Part:
lenBefore=len(scaffoldLeft)
currBase=scaffVirtStrands[1ftBrPt[0]][1ftBrPt[1]]
currBaseIn=1£tBrPt[1]
currStrIin=1£tBrPt(0]
lastPointAdded=False
ile not lastPointAdded:
if skipVirtStrands[currStrIn][currBaseIn]==1:
Here a deletion should be added, marked by 'D’
wSequVirtStrs[currStrin][currBaseIn]='D"
else:
wSequVirtStrs[currStrin][currBaselIn]=scaffoldLeft.pop(0)
currBaseIn=currBase[3]
currstrin=currBase([2]
if currBaseIn==-1 and currStrin=
lastPointAdded=True
else:
currBase=scaffVirtStrands[currStrIn][currBaseIn]
lenafter=len(scaffoldLeft)
print 'In left part '+str(lenBefore-lenAfter)+' bases were added and '+

bases are left over'

(lenAfter)+'

Right Part:
lenBefore=len(scaffoldRight)
currBase=scaffVirtStrands[rghtBrPt[0]][rghtBrPt(1]]
currBaseIn=rghtBrPt(1]
currStrin=rghtBrPt[0]
lastPointAdded=False
ile not lastPointAdded:
if skipVirtStrands[currStrin][currBaseIn]==1:
Here a deletion should be added, marked by 'D’
wSequVirtStrs[currStrin][currBaseIn]='D’
else:
wSequVirtStrs[currStrIn][currBaseIn]=scaffoldRight.pop(0)
currBaseIn=currBase[3]
currStrin=currBase[2]
if currBaselIn: and currStrin=
lastPointAdded=True
else:
currBase=scaffVirtStrands[currStrin][currBaseln]
lenAfter=len(scaffoldRight)
print 'In right part '+str(lenBefore-lenAfter)+' bases were added and '+str(lenAfter)+'

bases are left over'

OUTPUT STAPLE STRANDS
Go through the virtual staple strands and look for
staple startpoints. Horizontally, through each of the two
sub-structures.

stapBcount=0

stapCount=0
output=[]
strippedout=]
rows=['A','B','C",
plateNum=774
for subStructure i
if subStructur :
print 'Forward strand staples starting w. index '+str(stapCount)
output.append(', ,Forward Strand\n')
strtBase=0
endBase=323
else:
print 'Reverse strand staples starting w. index '+str(stapCount)
output.append(', ,Reverse Strand\n')
strtBase=328
endBase=643
plateNum+=1

r=-1
for sI in range(lastStrandIndex+l):
r+=1
if r==8: # Reset row numbering and start new plate

plateNum+=1
r=0
c=1 # Reset column numbering
for bI in range(strtBase,endBase):
if stapVirtStrands[sI][bI][0]
stapVirtStrands[sI][bI][2]>-1:
A staple start point
stapleSeq=[]
currBase=stapVirtStrands[sI][bI]
currBaseIn=bI
currStrIn=sI
lastPointAdded=False
while not lastPointAdded:
if skipVirtStrands[currStrin][currBaseIn]

-1 and stapVirtStrands[sI][bI][1]==-1 and

only add bases if no
deletion
stapleSeq.append(complement_to(wSequVirtStrs[currStrIn]
[currBaselIn]))
stapBcount+=1
currBaseIn=currBase[3]
currStrIn=currBase[2]
if currBaseIn==-1 and currStrln:
lastPointAdded=True
e
currBase=stapVirtStrands[currStrin][currBaseln]
stringoligo=''.join(stapleSeq)
output.append(str(plateNum)+', '+rows[r]
strippedOut.append(stringoligo+'\n')
stapCount+=1
c+=1
if e==14:
print 'Warning, col number was too high in plate '+str(plateNum)

r(c)+', +stringoligo+'\n')

while e<13:
£ill all columns
output.append(str(plateNum)+', "+rows[r]+str(c)+’, '+ \n")
ct=1

Connector staples
print 'Connector staples starting w. index '+str(stapCount)
plateNum+=1

r=0
c=0

output.append(', ,Connector staples\n')
for sI in range(lastStrandIndex+l):

if stapVirtStrands[sI][327](0]
stapVirtStrands[sI][327][2]>-1:

1 and stapVirtStrands[sI][327][1]==-1 and

A staple start point

re=
stapleSeq=[]
currBase=stapVirtStrands[sI][327]
currBaseIn=327
currStrin=sI
lastPointAdded=False
while not lastPointAdded:
if skipVirtStrands[currStrIn][currBaseIn]==0: # only add bases if no deletion
stapleSeq.append(complement_to(wSequVirtStrs[currStrin][currBaseln]))
stapBcount+=1
currBaseIn=currBase[3]
currStrin=currBase[2]
if currBaseIn==-1 currStrin
lastPointAdded=True
else:
currBase=stapVirtStrands[currStrIn][currBaseIn]
stringoligo=''.join(stapleSeq)
output.append(str(plateNum)+', '+rows[r]+str(c)+', +stringoligo+ ' \n')
strippedOut.append(stringoligo+'\n")
stapCount+=1

and

int 'The total number of staple bases calculated is
+str(stapCount)+' staple strands.'

r(stapBcount)+' on a total of

output_file=file('./LambdaStaples.cvs', 'w')
output_file.write(''.join(output))
output_file.close()

output_file2=file('./strippedLambdaStaples.txt’, 'w')
output_file2.write(''.join(strippedout))
output_file2.close()

